• README
  • Part I
    • Chapter 1: Introduction
    • Chapter 2: Multi-armed Bandits
    • Chapter 3: Finite Markov Decision Processes
    • Chapter 4: Dynamic Programming
    • Chapter 5: Monte Carlo Methods
    • Chapter 6: Temporal-Difference Learning
    • Chapter 7: n-step Bootstrapping
    • Chapter 8: Planning and Learning with Tabular Methods
  • Part II
    • Chapter 9: On-policy Prediction with Approximation
    • Chapter 10: On-policy Control with Approximation
    • Chapter 11: Off-policy Methods with Approximation
    • Chapter 12: Eligibility Traces
    • Chapter 13: Policy Gradient Methods
  • Part III
    • Chapter 14: Psychology
    • Chapter 15: Neuroscience
    • Chapter 16: Applications and Case Studies
  • 本书使用 GitBook 发布

README

Reinforcement Learning: An Introduction(2nd)阅读笔记

Rich Sutton的强化学习,有能力者请阅读英文原版。

目录

  • Part I

    • Chapter 1: Introduction
    • Chapter 2: Multi-armed Bandits
    • Chapter 3: Finite Markov Decision Processes
    • Chapter 4: Dynamic Programming
    • Chapter 5: Monte Carlo Methods
    • Chapter 6: Temporal-Difference Learning
    • Chapter 7: n-step Bootstrapping
    • Chapter 8: Planning and Learning with Tabular Methods
  • Part II

    • Chapter 9: On-policy Prediction with Approximation
    • Chapter 10: On-policy Control with Approximation
    • Chapter 11: Off-policy Methods with Approximation
    • Chapter 12: Eligibility Traces
    • Chapter 13: Policy Gradient Methods
  • Part III

    • Chapter 14: Psychology
    • Chapter 15: Neuroscience
    • Chapter 16: Applications and Case Studies

链接

英文原版地址:http://incompleteideas.net/book/the-book-2nd.html

Google Drive资料:https://drive.google.com/drive/folders/0B3w765rOKuKANmxNbXdwaE1YU1k

results matching ""

    No results matching ""